
International Journal of Solids and Structures 152–153 (2018) 272–293 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Polarities in structural analysis and design: n- dimensional graphic 

statics and structural transformations 

Marina Konstantatou 

a , ∗, Pierluigi D’Acunto 

b , Allan McRobie 

a 

a University of Cambridge, Department of Engineering, Trumpington St, Cambridge CB2 1PZ, UK 
b ETH Zürich, Institute of Technology in Architecture, Chair of Structural Design, Stefano-Franscini-Platz 5, Zürich 8093, CH, Switzerland 

a r t i c l e i n f o 

Article history: 

Received 8 March 2018 

Revised 11 June 2018 

Available online 12 July 2018 

Keywords: 

Structural design 

Graphic statics 

Reciprocal diagrams 

Airy stress function 

Static equilibrium 

Maxwell 

Rankine 

Cremona 

Poncelet duality 

Projective geometry 

a b s t r a c t 

This paper proposes a unified and entirely geometrical methodology for generating 2D and 3D force di- 

agrams for given planar and spatial trusses in static equilibrium within the context of graphic statics. 

The trusses, regarded as form diagrams, are projections of higher dimensional simply-connected stress 

functions, can be either self—stressed or loaded with external forces, and need not be tension-only/ 

compression-only. First, we provide an in-depth overview of fundamental notions of graphic statics and 

projective geometry related to the construction of reciprocal form and force diagrams. Specifically, we de- 

scribe a series of polar transformations and discuss them from a geometric and an algebraic standpoint. 

Moreover, we provide an exegesis and visualization of Maxwell’s reciprocal methods while discussing 

them within the scientific framework of his time. We then develop a contemporary graphic statics frame- 

work grounded on projective geometry and higher-dimensional reciprocal stress functions. Within this 

framework, we provide a general methodology for deriving any type of reciprocal diagrams for the pla- 

nar and the spatial case. Advantages of this method include: direct control on any of the four reciprocal 

objects (form diagram, force diagram, corresponding stress functions) and no need for iterative/ procedu- 

ral reconstruction of any of the diagrams since it is based on direct geometrical transformations. Finally, 

we highlight how duality, and in particular polarity, can be used for a wide range of applications in 

structural analysis and design. 

© 2018 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Graphic statics is a geometrical framework for the design and

analysis of 2D and 3D trusses in static equilibrium mostly devel-

oped during the 19th century by natural philosophers, scientists,

and practitioners of engineering such as (Culmann, 1857; Rankine,

1864; Maxwell, 1864; Maxwell, 1870; Cremona, 1872 ) among oth-

ers ( Kurrer, 2008; Charlton, 1982 ). In its initial widespread imple-

mentation, graphic statics consisted of a series of graphical pro-

cedures for the construction and transformation of two reciprocal

diagrams, the form and force diagrams, the former representing

the geometric layout of a loaded truss and the latter the equi-

librium of the internal and external forces applied to the nodes

of the truss. Nowadays, the possibility to support graphic statics

with contemporary computational tools has made it possible to

develop visual and intuitive approaches for the design, analysis,

and optimisation of structures based on the interplay between the
∗ Corresponding author. 
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eciprocal diagrams. However, most of the current methodologies

re generally case specific, work either for 2D or 3D form dia-

rams and do not make use of the possibilities offered by the un-

erlying fundamental geometrical framework, firstly introduced by

axwell (1864) and Maxwell (1870) , based on projective geometry

nd reciprocal stress functions. 

.1. Objectives and contributions 

The aim of this paper is to propose a unified and entirely geo-

etrical graphic statics framework for constructing 2D and 3D re-

iprocal force diagrams for given planar and spatial trusses in static

quilibrium. Taking advantage of the methods provided by projec-

ive geometry and the notion of higher-dimension stress functions,

he proposed unified framework can be used to derive any type

f planar or spatial reciprocals of a given truss in equilibrium, ei-

her self-stressed or externally loaded, when it is a projection of a

imply-connected higher dimensional stress function. This method-

logy applies to numerous structures, however it should be noted

hat there are also some configurations of trusses in equilibrium

hich cannot be represented by reciprocal diagrams. Since this
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Projective Geometry Duality (Dimension of Stress Function)

Corresponding Truss Dimension  

3D2D

2D1D

4D

3D

0D, 1D, 2D, 3D Geometrical Elements

enalp-repyH - D3enalP - D2eniL - D1tnioP - D0

Connectivity Duality between Geometrical Elements

Cp = Cl

Cl = Cp  
Cp = Cpl 
Cl = Cl 
Cpl = Cp 

Cp = Ch-pl 
Cl = Cpl 
Cpl = Cl

Ch-pl = Cp 

Fig. 1. Summary of duality principles between geometrical elements in projective geometry and correspondence between n-dimensional structures and their (n + 1)- 

dimensional stress functions. 
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ethod is based on direct geometrical transformations there is no

eed for iterative or procedural reconstruction of the reciprocal di-

grams every time one of them is updated. On the contrary, the

esigner can have direct control on any of the reciprocal objects:

orm diagram; force diagram; corresponding stress functions and

ny local or global transformation in one of them will directly up-

ate the others. Apart from design, analysis, and optimization of

tructures, the suggested framework also encompasses other ap-

lications in structural engineering theory, such as the generation

f dual structures based on the notion of polar transformations. 

.2. Content 

To set up a consistent theoretical ground for the proposed

ramework, in Section 2 we summarise a series of fundamental no-

ions related to graphic statics, reciprocal diagrams and Airy stress

unctions, as well as projective geometry and polar transforma-

ions. These notions are contextualized within the scientific frame-

ork of the time when they were introduced and in particular in

elation to Maxwell’s approach. From this starting point, we pro-

ose in Section 3 a unified methodology for deriving any type of

lanar or spatial reciprocals of trusses, which are projections of

igher-dimensional stress functions. In Section 4 , we discuss how

his framework can be used for global and local transformations

f any one of the reciprocal objects and how it can potentially

implify and give insights into the design, analysis, and optimisa-

ion of structures by considering specific case studies. Finally, in
ection 5 we highlight existing applications of polar transforma-

ions for the creation of dual structures and how these can be di-

ectly included in the proposed framework. 

. Fundamental notions 

.1. Graphic statics 

The scientific context that gave rise to the development of

raphic statics is grounded on the legacy of Da Vinci, Galilei,

ewton ( Zalewski and Allen, 1998 ), Hooke, Poleni, and Stevin

 Heyman, 1995 ). Cremona (1872) traces back the foundation of

raphic statics to the 18th century, when Varignon used the funic-

lar polygon and the polygon of forces to calculate and visualize

he equilibrium of a system of forces in plane ( Varignon, 1725 ).

ccording to Maxwell and Cremona, Rankine was the first one

o propose a consistent graphical methodology for the analy-

is of bar frameworks in his “A Manual of Applied Mechanics”

 Rankine, 1858 ). The earliest systematisation of the theory of

raphic statics was due to Culmann, with the publication of

is seminal monograph ‘Die Graphische Statik’ ( Culmann, 1866 ).

ankine’s, Maxwell’s, Cremona’s, and Culmann’s methods were

hen further extended by various scientists and practitioners

f engineering at the end of the 19th century, such as Bow in

is work ‘The economics of construction in relation to framed

tructures’ ( Bow, 1873 ). However, it is Maxwell who is credited as

he originator of the notion of reciprocity between form and force



274 M. Konstantatou et al. / International Journal of Solids and Structures 152–153 (2018) 272–293 

Fig. 2. Polarity on the plane between a point (P) and a line (p) induced by a conic 

in 2D projective geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Polarity in three-space between a point (P) and a plane ( π ) induced by a 

quadric in 3D projective geometry. 

Fig. 4. Polarity in three-space induced by a paraboloid of revolution. 

f  

o  

A  

o  

E  

a  

p  

s  

d  

b  

c  

(  

g  

t  

o  

t  

i  

a  

t  

c  

g  

f  

d  

a  

a  

a  

e  

p  

p  

n  

a  

e  

i

diagrams ( Charlton, 1982; Kurrer, 2008; Zalewski and Allen, 1998 )

and who suggested a methodology to construct the diagrams

within the context of projective geometry. Relevant work in this

direction was also undertaken by Cremona (1872) , who introduced

an approach alternative to the one of Maxwell for the construction

of reciprocal diagrams. 

The design and analysis procedures of graphic statics were par-

ticularly relevant in the late 19th century, when they were re-

garded, along with the notions of projective geometry, as essen-

tial elements in the education of young engineers ( Chartlon, 1982 ).

At that time, graphic statics and more generally graphical anal-

ysis were used as the conventional approach for the solution of

several engineering problems, including safety assessment of ma-

sonry vaults, arches and domes. However, most of the applica-

tions were largely limited to the standardized analysis of two-

dimensional trusses and required a considerable number of hours

of draughtsmanship. In the early 20th century, the interest in and

research on graphic statics went through a rapid decline. The de-

velopments in analytical statics led engineers away from the sub-

ject, where no significant progress was made after the late 19th

century ( Kurrer, 2008 ). By the second quarter of 20th century,

graphic statics was almost entirely replaced by the analytical ap-

proaches of elasticity theory, which relied on the solution of equa-

tions rather than the construction of time-consuming hand draw-

ing. The fast advances in analytical statics and the introduction of

numerical methods such as the finite element method in the sec-

ond half of the 20th century, led to the widespread situation where

in the curricula of young engineers and architects, the study of ge-

ometry, let alone projective geometry and its relation to graphic

statics gradually declined. In the field of theoretical research, an

exception is represented by the work of the structural topology

group at the University of Montreal on planar and spatial recip-

rocal diagrams among others. There, following Maxwell’s legacy,

the application of projective geometry and higher-dimensional du-

ality between stress functions was developed from a general and

mathematical point of view within the context of rigidity theory

( Crapo, 1979; Crapo and Whiteley, 1994 ). In the field of applied

research, graphic statics has been proposed, within the domain of

plasticity theory, for the design of reinforced concrete structures

( Muttoni et al., 1996 ). 

Over the last few decades, graphic statics has seen a renewed

interest. This directly reflects the increasing demand for the con-

struction of material efficient structures, which in turn calls for

the use of synthetic and intuitive tools that allow the designers

to take advantage of the relationship between form and forces

from the early stages of the design process. In this context, the

tendency of reintroducing graphic statics within the engineering

and architectural education is significant ( Zalewski and Allen, 1998,

2009; Muttoni, 2011 ). Recent applications of graphic statics are un-

derpinned by the computational and visualization capabilities of-

fered by contemporary computer aided design tools. These can be
ound, among others, in the design of compression-only or tension-

nly spatial funicular structures by means of the Thrust Network

nalysis (TNA) ( Block and Ochsendorf, 2007 ), in the form-finding

f tension-compression spatial networks with the Combinatorial

quilibrium Modelling (CEM) ( Ohlbrock et al., 2016 ), and in the

nalysis and design of compression-only and tension-only spatial

olyhedral structures ( Akbarzadeh et al., 2015 ). Moreover, graphic

tatics can be also used in the context of transformations of form

iagrams in static equilibrium ( Fivet, 2016 ). Other recent contri-

utions in the study and generalization of graphical analysis in-

lude publications from Fraternali and Carpentieri (014), Micheletti

2008) , and Zanni and Pennock (2009) . Graphic statics has also re-

ained popularity in the engineering industry as a design and op-

imisation tool ( Beghini et al., 2013; Mazurek et al., 2016 ). Most

f the current graphic statics approaches for the construction and

ransformation of 3D form and force diagrams rely on the use of

terative algorithms or procedural reconstruction techniques, such

s the polyhedral one ( Akbarzadeh et al., 2015 and Lee et al., 2018 ),

he vector-based one ( D’Acunto et al., 2017 ), and operate on a lo-

al node-by-node basis. A direct global implementation, which is

rounded on the definition of higher dimensional reciprocal stress

unctions as a tool for generating pairs of reciprocal form and force

iagrams, has been also suggested ( McRobie, 2016; Konstantatou

nd McRobie, 2016 ). This can be directly related to the graphical

nalysis of general planar and spatial frames using Clifford algebra

s well as faces of zero-oriented area ( McRobie, 2017 ). The math-

matical toolkit of Clifford algebra, such as bivectors and wedge

roducts, offers a rich geometrical description which can encom-

ass more general reciprocal diagrams where the force faces need

ot be perpendicular to the form edges. This enables the evalu-

tion of all six stress-resultants rather than solely the axial force

ven for cases where the geometry of adjacent force faces is not

dentical. 
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Fig. 5. Polarity in four-space induced by a hyper-paraboloid of revolution (in a schematic representation here). 

Fig. 6. Plane and origin construction mapping a point (P) and its reciprocal polar 

plane ( π ). 
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.2. Maxwell, analogies, and his abstract mathematical view of 

raphic statics 

Maxwell was interested in the concept of analogies in science

rom a very young age. He was particularly intrigued by the rela-

ion between beautiful forms and mathematics ( Harman, 2004 );

rom how the underlying geometrical principles can act as a

orphological mould. That idea was explored conceptually in his

ssay ‘Analogies in Nature’, which he wrote for the student society

Cambridge Apostles’ in 1856 ( Harman, 1990 ). In this work, he

entioned reciprocity which would be a key idea in his seminal

apers on structures and electromagnetism ( Harman, 1990 ). Also,

ew months earlier, he published one of his seminal papers ‘On

araday’s lines of force’ (Maxwell, 1855) where he related magnetic

orces with electric currents through a geometrical construction of
ines of force which run on a surface in an analogous way to how

ncompressible fluids flow ( Harman, 2004 ). Maxwell’s fascination

ith analogies and reciprocity was heavily influenced from his

ontemporaries and took form through the mathematical theories

f his time. 

The mathematics of late 19th century were characterized not

nly from projective geometry, the ‘modern geometry’ of the time,

ut also from the newly formed topology. Maxwell was familiar

ith the work of Carnot, Chasles, and Poncelet with respect to the

ormer and the work of Gauss, Listing, Euler, Riemann, Leibniz, and

ayley with regards to the latter ( Harman, 1998; Maxwell, 1870 ).

is mathematical physics framework was heavily influenced by

auss’ ‘Geometria Situs’ and Listing’s topology, which shaped his

knotted curves’ discussion, his theory on translations and rotations

f spatial motions, and fed his electromagnetic analogies and rela-

ions between electrical circuits and lines of force ( Harman, 1998 ),

Maxwell, 1855). Moreover, Maxwell also used projective geome-

ry as a tool of geometrical analogy; in his point of view, projec-

ive geometry could express the supremacy of the geometrical over

he analytical way of thinking ( Harman, 1998 ). This can be seen

learly in his theory of reciprocity between geometrical elements if

laced within a projective geometry framework. Maxwell wrote on

his: ‘The study of corresponding elements in two figures has led

o the establishment of a geometry of position by which results

re obtained by pure reasoning without calculation, the verifica-

ion of which by the Cartesian analysis would fill many pages with

ymbols.’ ( Harman, 1998 ). As a result, projective geometry and its

nderlying notion of duality was the tool used by Maxwell to ex-

ress the reciprocity between not only form and force diagrams in

he context of graphical analysis but also, of ‘geometrical optics,

lectrical circuits, and the kinetic theory of gases’ ( Harman, 1998 ). 

Maxwell’s graphical analysis of trusses ( Maxwell, 1864, 1867,

870 ) was particularly influenced by Chasles’, Monge’s, and Pon-

elet’s pole and polar construction and duality principle, which

xpressed the reciprocity between form and force diagrams. As

e characteristically put it in 1873: ‘[…] principle of duality…the
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Fig. 7. Given a set of five input forces in space (f 1 to f 5 ), this can be composed into a pair of skew resultants (r a and r b ); the lines of action of these resultants are conjugate 

lines under a null polarity. Given any point on the line of action of one resultant, its polar plane is the plane incident that point and containing the line of action of the 

other resultant. As such, if a point moves along the line of action of one resultant, its polar plane rotates around the line of action of the other resultant. 

Fig. 8. Null polarity mapping a self-conjugate point (P) and its reciprocal polar 

plane ( π ) and the construction of a Möbius pair of tetrahedra. 
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leading idea of modern geometry’ ( Harman, 1998 ). Maxwell

combined the projective geometry duality with Euler’s work on

polyhedral counting to develop his theory of reciprocal diagrams

in statics. He observed that planar reciprocal diagrams follow the

counting rules of polyhedra when it comes to their constituent

geometrical elements (points, edges, faces) and that a planar form

diagram has a force reciprocal when it is a projection of a poly-

hedron ( Maxwell, 1864 ). At that point, he would derive reciprocal

diagrams by using geometrical constructions with circles, for the

planar, and spheres, for the spatial case, which would ensure that

corresponding reciprocal elements were perpendicular. However,

it is not until few years later that he placed his constructions
ne dimension up, and entirely in the space of the reciprocal

olyhedra following Poncelet’s and Monge’s theory of polar fig-

res ( Charlton, 1982 ). Maxwell was also familiar with the work

f Airy (1862) since he was keeping a regular communication

ith the Astronomer Royal on all sorts of scientific matters and

e was a reviewer for some of his work. In particular, Maxwell

long with Rankine were the reviewers of Airy ( 1862 ) paper on

tructural analysis and the Airy stress function ( Harman, 1990 )

hich he considered as a significant simplification of the already

xisting theories and he later developed and applied himself in

is graphical analysis of trusses. A number of his contemporaries,

such as Cremona, Rankine, and Culmann) adopted, generalized,

r standardized his methods. However, most of them did not

rasp or consider reciprocal diagrams in the deep geometrical

ay Maxwell did. An exception was Cremona, who as a geometer,

as also familiar with polarities, and who discussed and applied

öbius’ null-system methods. As a result, Maxwell is credited

ith making the biggest intellectual contribution in the context of

raphic statics ( Kurrer, 2008 ). 

.3. Reciprocal diagrams and stress functions 

The introduction of the notion of reciprocal form and force di-

grams was attributed to Maxwell by Cremona (1872) for the 2D

ase and to Rankine by Maxwell (1864) for the 3D case. In his sem-

nal publications on structural theory Maxwell observed that a 2D

orm diagram in static equilibrium has a reciprocal force diagram

f and only if they are projections of equally reciprocal, plane-faced

hree-dimensional polyhedra ( Maxwell, 1864, 1870 ). As mentioned

y Maxwell, each of these reciprocal polyhedra can be constructed

rom the other one, through a polar transformation based on a

araboloid of revolution ( Maxwell, 1870 ). Moreover, the polyhe-

ron corresponding to a given 2D truss represents an instance of a

iecewise linear Airy stress function, with the change of slope be-

ween adjacent faces providing the axial loads of the correspond-

ng truss. 

In fact, the roles of reciprocal form and force diagrams are in-

erchangeable and there is no distinction between lines of action

f the applied forces and structural members. This has been ex-

lained in detail in ( McRobie et al., 2016 ) and in ( Mitchell et al.,
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Fig. 9. Left: Reciprocal polyhedral Airy stress functions ( P, P’ ) through a polarity induced by a paraboloid of revolution. Right: The orthographic projections of the reciprocal 

polyhedra produce a pair of reciprocal form and force diagrams ( F, F’ ). 

2  

t  

w  

d  

g  

t  

t  

s  

a

 

t  

b

 

 

 

r

t

s

e

 

 

 

 

a  

m  

e

2

 

r  

e  

h  

s  

o  
016 ) where external forces, which can be applied on the struc-

ural perimeter as well as on internal nodes, 1 can be combined

ith the form diagram to make a projection of a single polyhe-

ron, possibly with the use of an extra portion of a funicular poly-

on. Thus, this polyhedron can be also seen as the Airy stress func-

ion of an equivalent self-stressed truss ( Fig. 15 ). As a result, in

he following there is no distinction between these two cases (self-

tressed, with external loading) since they are geometrically equiv-

lent. 

Depending on their spatial dimension and the geometrical rela-

ionship between corresponding members, reciprocal diagrams can

e categorised as follows: 

• Maxwell 2D reciprocals , where edges in the 2D form diagram

correspond to perpendicular edges in the reciprocal 2D force

diagram; 

• Cremona 2D reciprocals , where corresponding edges between 2D

form and force diagrams are parallel; 
1 In the general case, the application of an external load to an internal node can 

esult in a non-planar graph (where edges intersect) which is thus not the projec- 

ion of a simply-connected polyhedron. This issue can be addressed with the inclu- 

ion of extra nodes where the line of action of the external load intersects the form 

dges following Bow’s technique ( Bow, 1873 ). 

(  

t  

T  

o  

s  

i  

e  
• Rankine 3D reciprocals, where form edges correspond to recip-

rocal perpendicular force faces; 

• Cremona 3D reciprocals , where edges in the 3D form diagram

correspond to parallel edges in the reciprocal 3D force diagram.

We should note that Maxwell 2D and Cremona 2D diagrams

re identical up to a 90 ° rotation, whereas Rankine 3D and Cre-

ona 3D are geometrically distinct since in the former forces are

xpressed by surface areas and in the latter by edge lengths. 

.4. Simply connected n-polytopes 

The necessary and sufficient condition for the existence of

eciprocal form and force diagrams introduced by Maxwell is

quivalent to the independent conditions that a form diagram

as an underlying planar graph and it also possess a state of

elf-stress ( Crapo, 1979 ). A polyhedron can be defined as a set

f vertices v , edges e , and faces f : P (v, e, f) . A planar graph G

v, e) is a set of vertices v and edges e , which can be drawn

opologically on a 2D Euclidean plane without any edge crossing.

his can be extended to spatial trusses, which are projections

f 4-polytopes and have an underlying spatial planar graph. It

hould be noted that 4-polytopes are the equivalent of polyhedra

n the four-dimensional space and are a set of vertices v , edges

 , faces f, and cells c : P (v, e, f, c). The cells lie on hyper-planes
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Fig. 10. Left: Constructing a reciprocal polyhedron ( P’ ) through a polarity induced by a sphere. Right: The perspective projection from the centre of the sphere of the polar 

polyhedron together with the orthographic projection of the original polyhedron produce a pair of reciprocal form and force diagrams ( F, F’ ). 
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in the same way that faces lie on planes; hyper-planes constitute

three-dimensional subspaces in four-dimensional space in the

same way that planes constitute two-dimensional sub-spaces in

three-dimensional space. A spatial planar graph G (v, e, f) is an

un-oriented graph, which can be drawn topologically in a 3D

Euclidean space without any edges or faces crossing ( Crapo, 1979 ).

The above statements imply that the polyhedra or 4-polytopes, of

which the 2D or 3D trusses are projections, are spherical from a

topological standpoint ( Crapo, 1979 ). A topologically spherical, or

simply connected, polyhedron P (v, e, f) follows Euler’s formula:

v − e + f = 2 : every edge belongs to two faces only and there are

no isolated vertices, edges, or faces. Furthermore, the underlying

planar graph must have more than three vertices, which should be

3-vertex connected (i.e. if any two vertices are removed and their

adjacent edges the graph does not divide into two subgraphs)

( Whiteley, 1979 ). Equally, a simply connected 4-polytope obeys

Schläfli’s equation, which is a generalization of Euler’s formula

for n- polytopes (Coxeter, 1973): v − e + f – c = 0 . Each of its faces

belongs to only two cells, every edge is the intersection of at least

3 faces and there are no free vertices, edges, faces, or cells. 

The condition of possessing a planar graph is necessary but

not sufficient for a 2D truss to have a reciprocal. Together with

the additional requirement that the 2D truss has a state of self-

stress, these conditions imply that the 2D truss is an accurate pic-

ture on the Euclidean plane of a projection of the corresponding

polyhedron ( Crapo, 1979 ). As a result, a 2D truss without exter-

nal loading, which is a projection of a polyhedron, is necessarily

self-stressed ( Micheletti, 2008 ). At the same time, given a diagram

of a 2D truss with a planar graph the question arises of how to

assess whether this diagram corresponds to a projection of a poly-

hedron. This has been studied in the fields of scene analysis and

rigidity theory among others. One of the geometrical algorithms

in Euclidean geometry that can be used is based on the fact that

every three planes meet at a point (unless they are parallel) and

l  
ll the vertices of a face lie on the same plane ( Whiteley, 1979 ).

he same algorithm can be generalised for 4-polytopes and hy-

erplanes; in which case every four hyperplanes meet at a point

unless they are parallel), all vertices of a cell lie on the same hy-

erplane, and all vertices of a face on the same plane. It should

e noted that in the 2D case there can be trusses which do not

ave a planar graph but nevertheless possess a state of self-stress:

t has been proven that such diagrams have equivalent (isomor-

hic) spaces of internal forces to the ones resulting from adding

xtra vertices to the points of intersection of crossing edges ( Bow,

873; Crapo and Whiteley, 1993 ). The final diagram, with the pos-

ible addition of vertices, is self-stressed, has a planar graph and is

hus a projection of a polyhedron. However, while this construction

oes not apply to the 3D case, it should be noticed that for spa-

ial trusses, cases can be found where trusses are not projections

f simply connected 4-polytopes and nonetheless, they do possess

tates of self-stress. In contemporary nomenclature this is called

Rankine incompleteness’ and has been discussed recently in the

raphic statics literature ( McRobie, 2016, 2017 ). 

The polarities approach followed here can be applied to any

D self-stressed truss, to any 3D self-stressed truss which is a

rojection of a simply-connected 4-polytope, and to rotationally

ymmetric spatial self-stressed structures (such as tensegrities)

hrough the technique of coning. Following this method, spatial

tructures which have just one cell, which would otherwise map

o just a single point, can be further subdivided to numerous cells

hich in turn can produce a geometrically richer force reciprocal

 McRobie, 2017 ). 

.5. Projective geometry and principle of duality 

Projective geometry is a system of geometric prepositions that

oes not include any of the familiar Euclidean notions of paral-

elism, intermediacy, angle and length measurement. Its origins
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Fig. 11. Left: Reciprocal polyhedral Airy stress functions ( P,P’ ) through a null-polarity. Right: The orthographic projections of the reciprocal polyhedra along the central axis 

produce a pair of Cremona 2D reciprocal form and force diagrams ( F,F’ ). 
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an be traced back to Pappus of Alexandria (4th century) as well

s the French architect Desargues (16th century) and the French

hilosopher and mathematician Pascal (17th century) ( Coxeter,

969; Rosenfeld, 1988 ). On the projective plane, two lines always

eet in a point, either an ordinary point or a point at infinity

 Coxeter, 1974 ). The set of all the points at infinity constitutes

he line at infinity, which together with the Euclidean plane de-

nes the projective plane. On the projective plane, there is only

ne type of conic, or conic section; it is its position with respect

o the line at infinity that gives rise to the different embeddings

circle, ellipse, parabola, hyperbola) when seen from a Euclidean

oint of view ( Coxeter, 1974; Rosenfeld, 1988 ). Moreover, thanks to

he principle of duality, any projective geometry proposition that

s true for points and lines can be dualized to an equivalently

rue proposition for lines and points. The principle of duality thus

orks by interchanging primitive geometrical elements of the pro-

ective plane. This can be extended to higher spatial dimensions by

aking into account the primitive elements of the specific projec-

ive space under consideration (i.e. the point and the line in 2D;

he point, the line and the plane in 3D; the point, the line, the

lane and the hyperplane in 4D). 

Considering that an n- dimensional form diagram and its recip-

ocal force diagram are projections of (n + 1)- dimensional stress

unctions, this reciprocal pair also obeys the counting rules and

onnectivity of their higher-dimensional stress functions ( Fig. 1 ).

or example, a 2D truss and its 2D force reciprocal are projec-

ions of 3D polyhedral stress functions and they thus obey the

onnectivity and counting rules of these polyhedra: points map to

lanes, lines to lines, with the connectivity remaining fixed; if two

oints of the form diagram are connected via an edge then the
 p  
orresponding faces of the force reciprocal intersect and share a

ommon edge. 

.6. Polarities 

A polarity, or polar transformation, is a correspondence which

aps geometrical elements of the projective space to each other

ccording to the principle of duality ( Fig. 1 ) and has a degree-2

transforming an element twice results in the initial element).

esargues was the first one to define the notion of polar trans-

ormation on the projective plane ( Rosenfeld, 1988 ), where every

oint ( pole ) is transformed into a line ( polar line ) through a conic

nd vice versa. Subsequently, Monge proposed a generalization

f Desargues’ polarity to the projective three-space, where every

oint ( pole ) is mapped to a plane ( polar plane ) through a quadric

 Monge, 1794 ) and vice versa. We should note that the quadric

s the generalisation of the conic in three-space: a surface (such

s the sphere, the ellipsoid, the hyperboloid, and the paraboloid)

escribed in Euclidean geometry by a polynomial of degree two.

onge used a paraboloid of revolution as the base quadric of

he polarity to derive reciprocal polyhedra ( Chasles, 1875 ) in the

ame way as mentioned by Maxwell in his 1870 paper. The work

f Monge was then systematized and further developed by his

tudent Poncelet who formalised the principle of duality ( Poncelet,

822; Rosenfeld, 1988; Cremona, 1873 ). From an algebraic stand-

oint, significant contributions to the field were made by Möbius,

ho showed that projective transformations and polarities can be

reated in an analytic way ( Rosenfeld, 1988 ), representing them

n matrix form ( Gray, 2010 ) (see Section 2.5.3). Grounded on the

rinciple of duality and linear algebra, Möbius developed the
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Fig. 12. (a, b): Topology of two reciprocal 4-polytopes ( P, P’ ), constructed through a polarity induced by a hyper-paraboloid of revolution; (c, d): The orthographic projection 

of the 4-polytopes produces a pair of reciprocal form and force diagrams ( F, F’ ) which follow 4D duality between their geometrical elements; (e, f): form vertices v map to 

reciprocal cells c; (g, h): form edges e map to reciprocal and perpendicular force faces f. 
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Fig. 13. Cremona 3D reciprocals. Left: Spatial form diagram which is topologically a cube. Right: Reciprocal force diagram which is topologically an octahedron with corre- 

sponding edges parallel. 
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oncept of null-polarity, a form of polarity that is not related to

ny quadric and can be defined only for odd-dimensions ( Baer,

945; Gray, 2010 ). The work of Möbius had a significant role in

he field of graphic statics thanks to Cremona, who adopted his

ull-polarity in 3D to obtain Cremona 2D reciprocals, albeit in a

eometrical rather than algebraic way. 

Polarities, not only are of degree-2, where the image of a trans-

ormed element is the element itself (e.g. in the projective plane, a

oint A maps to a line a which maps back to point A ) but also, they

reserve incidence (the abstract concept which expresses whether

wo objects ‘contain’ each other: if a point is incident to a line

hen the point lies on that line; if a line is incident to a plane

hen the line belongs to that plane; if two lines intersect in a

oint, this point is incident to both lines and consequently these

wo lines are concurrent . A 2D example of how incidence and du-

lity are preserved through polarities could be: on the projective

lane, if three lines a, b, c are concurrent on a point D , then the

olar points A, B, C lie on the polar line d ) ( Coxeter, 1969 ). Polari-

ies can be categorised depending on whether and how they admit

elf-conjugate points (i.e. points that lie on their polar lines on the

rojective plane or on their polar plane in the projective three-

pace). On the projective plane, polarities can be of two types: hy-

erbolic (with self-conjugate points that, as observed by Von Staudt

 Coxeter, 1969 ), are the locus of a conic), and elliptic (which does

ot admit any self-conjugate point). In the projective three-space

here are four types of polarities: the elliptic polarity (without self-

onjugate points), two different hyperbolic polarities (which differ

epending on whether the locus of self-conjugate points is a ruled

uadric or not) and the null-polarity (where every point of space

s self-conjugate) (Coxeter, 1998). Since polarities are global trans-

ormations mapping every element in space to another they are a

seful tool for generating global force reciprocals of structures in

tatic equilibrium as well as for transforming structures from one

ypology to another. 

.6.1. Construction of hyperbolic polarities in 2D, 3D and 4D space 

Hyperbolic polarities can be constructed with simple geomet-

ic procedures, as explained by Desargues, Monge, and Poncelet.

iven a generic point P (pole) and a conic γ on the projective

lane, in such a way that P is outside γ , the two lines a and b

ncident to P and tangent to γ meet the conic in two intersection

oints A and B ; the chord through A and B defines the polar line

 ( Fig. 2 ). Equivalently, given any pole P outside of a quadric � in

he projective three-space, the cone with vertex in P and tangent

o �, intersects the quadric in a planar curve γ (a conic), which

ies in the polar plane π ( Fig. 3 ). Equivalent constructions can be
ollowed when P is inside the conic ( Fig. A.1 ) or quadric ( Fig. A.2 )

see Appendix A ). We should note that these constructions readily

pply on the Euclidean plane and space for any embedding of a

onic (circle, parabola, ellipse, hyperbola) and real non-degenerate

uadric (sphere, paraboloid, ellipsoid, hyperboloid), in this section

e use as a 2D example an ellipse and as a 3D example an ellip-

oid. 

Considering these geometric constructions from a Euclidean

erspective and reclaiming the distinction between various non-

egenerate conics and quadrics, the relations between dual ele-

ents can be expressed in analytical form, using Cartesian coordi-

ates ( Smith, 1886 ). These were already studied in Maxwell’s time

n the 19th century. For the general equation of a quadric: 

 x 2 + b y 2 + c z 2 + 2 f yz + 2 gzx + 2 hxy + 2 ux + 2 v y + 2 wz + d = 0 . 

(1) 

nd given a pole P (x’, y’, z’), the corresponding polar plane π is

escribed by the following equation: 

 

(
ax ′ + hy ′ + gz ′ + u 

)
+ y 

(
hx ′ + by ′ + f z ′ + v 

)

+ z 
(
gx ′ + f y ′ + cz ′ + w 

)
+ ux ′ + v y ′ + wz ′ + d = 0 . (2) 

Polarities can be thought of as pairs of transformations L, L −1 

hat map a plane π , defined in equation form as z = Ax + By + C

nd described by the corresponding quadruples (A, B, 1, C) , to a

oint P described from the triple (x’, y’, z’ ) and vice versa (L( π ) = P,

 

−1 (P ) = π ) . Using, for example, a paraboloid of revolution with

quation x 2 + y 2 -2cz = 0 as the quadric of the polarity, for a point P

x’, y’, z’ ) the equation of the polar plane is z = (x’ /c)x + (y’ /c)y-z’ ,

ith L: L (A, B, 1, C) = (cA, cB, -C) and L −1 : L −1 (x’, y’, z’ ) = (x’ /c, y’

c, 1, -z’ ) ( Fig. 4 ). 

In the four-dimensional space, following the duality principle

escribed above, a point P is mapped to a polar hyper-plane π .

pecifically, given a point P outside a hyper-quadric � (i.e. a four-

imensional generalisation of a three-dimensional quadric), the

yper-cone with vertex in P and tangent to �, intersects � in a

uadric that lies on the hyper-plane π ( Fig. 5 ). In equation form,

nd for the hyper-paraboloid of revolution: 2cw = x 2 + y 2 + z 2 , for a

oint P (x’, y’, z’, w’ ) and for a plane π (w = Ax + By + Cz + D), L: L

A, B, C, 1, D) = (cA, cB, cC, -D) and L −1 : L −1 (x’, y’, z’, w’ ) = (x’ /c, y’

c, z’ /c, 1, -w’ ). 

An alternative geometric procedure to find the pole P of a given

olar plane π in projective three-space is the plane and origin con-

truction, described by Maxwell ( Maxwell, 1870 ). Given a polyhe-

ron P , a face f which lies on a plane π , an arbitrary origin O,
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Fig. 14. Vector-based 3D diagrams: (a): 3D form diagram of a spatial truss with a 5-simplex geometry F (5, 10, 10, 5); (b): 3D force diagram with corresponding force edges 

e’ parallel to the form edges e’; (c, d, e): The form vertices v map to force faces f’ following a 3D duality, however; the resulting force diagram F’ (8, 12, 5, 0) duplicate edges. 
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t  

o  
and an arbitrary plane π0 that does not contain O , a line l ( axis )

through O and perpendicular to π0 is first fixed. The perpendicular

line from O to the given polar plane π intersects π0 in the point

P 0 , which corresponds to the projection of the pole P on the plane

π0 ; the pole P thus lies on the line containing P 0 and perpendicu-
ar to π0 . The position of P can be found considering that the dis-

ance between P and P 0 equals the distance d of the intersection

f the axis l with the plane π but on the other side of π0 ( Fig. 6 ).
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Fig. 15. Reciprocal polyhedral Airy stress functions ( P, P’ ) and resulting pairs of form and force diagrams ( F, F’ ) in Maxwell 2D configuration for Maxwell’s figures IV & 4 

(left) and figures V & 5 (right) (1864). 

Fig. 16. Reciprocal polyhedral Airy stress functions ( P, P’ ) for a Pratt truss ( F ) (top) and its force reciprocal ( F’ ) (bottom). We highlight how the same Airy stress function 

can correspond to a Pratt truss with external loading (top right) and a self-stressed truss with an equivalent geometry (top middle). 
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Fig. 17. Polyhedral Airy stress function ( P ) and planar form and force diagrams ( F, F’ ) for a Pratt truss under local and global transformations, from top to bottom: local 

transformation by moving a truss node; global transformation by shearing the Airy stress function; global transformation by scaling the form diagram; combination of the 

above transformations. Equivalent, F can be seen as a force diagram and F’ as a reciprocal form diagram. 
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2.6.2. Construction of null-polarity in 3D space 

As observed by Möbius (1833 ), a system of non-equilibrated

and non-coplanar forces in space can be composed up to a pair

of resultants or, equivalently, up to one resultant and one couple.

This can be achieved through various geometric constructions ( D’

Acunto et al., 2016 ). In the first case, infinite pairs of resultants

can be found for a given system of forces so that the two lines of

action of each pair constitute conjugate lines under a null-polarity

( Cremona, 1872 ). As such, regarding a point on one of the two con-

jugate lines as a pole, its polar plane is the plane incident with

that point and containing the other line ( Fig. 7 ). As pointed out by

Cremona (1872) , for a given system of forces in space, once one

of the two conjugate lines is fixed, the other one is univocally de-

termined. One of the main peculiarities of the null-polarity, which

differentiates it from elliptic and hyperbolic polarities, is that ev-

ery point in space is a self-conjugate point (i.e. it lies on its polar

plane). Hence, in every point and plane of space it is possible to

find a flat pencil of lines (i.e. a set of infinite coplanar lines that

are all incident to the same point), the centre of which is a pole

lying on the polar plane defined by the pencil (Coxeter, 1998). As

a result, for a given system of forces in space once a pole is fixed

its polar plane is univocally determined and vice versa. 
The lines that form the flat pencil are self-polar lines or null lines

i.e. the polar planes of the points constituting these lines are inci-

ent to the lines themselves) and the moment of the given system

f forces with respect to any of them is null. The set of all self-

olar lines in a null-polarity constitutes a linear complex in the

rojective three-space (Coxeter, 1998), which is univocally defined

y five independent skew lines. It should be noticed that the null-

olarity cannot be induced by a quadric ( Konstantatou and McRo-

ie, 2016 ). To construct a null-polarity in the projective three-space

 Cremona, 1890 ) ( Fig. 8 ), for an arbitrary plane π0 and four points

, B, C, D on it, which every three are not collinear, three arbitrary

lanes π a , πb , π c , which pass through the lines AD, BD, CD re-

pectively are fixed. The planes π a , πb and π c intersect each other

n the lines l bc , l ca , l ab . For any plane π that intersects the lines l bc ,

 ca , l ab in the points P, Q, R respectively, the planes π PBC , πQCA , πRAB 

re then defined. These planes are all incident with the same point

 , which is the pole of the polar plane π and is self-conjugate

ince it lies on it. Based on this construction, the two tetrahedra

BCS and PQRD are reciprocal under the null-polarity (Möbius pair

f tetrahedra) ( Fig. 8 ): these tetrahedra are mutually inscribed into

ach other, since each of the vertices (pole) of a tetrahedron lies
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Fig. 18. incorporation of boundary conditions / external forces in the form diagram. Left: adding concurrent forces on the structural boundary for a 2D (top) and 3D (bottom) 

truss and equivalent self-stressed form diagrams. Right: adding concurrent forces anywhere in the structure. 

o  

(

 

a  

i  

t  

r  

s  

d  

t  

s  

t

2

 

s  

v  

a  

o  

a  

w  

p  

b  

p  

h  

e  

m  

t  

u  

a  

s  

c

 

f  

a  

t

S

t  

t

n one face (polar plane) of the other tetrahedron and vice-versa

 Crapo, 1979 ). 

Among the infinite pairs of resultant and couple equivalent to

 given system of forces in space, it is possible to define one that

s constituted respectively by a force vector and a moment vector

hat are parallel to each other. The line of action of the resultant

epresents the central axis of the system of forces. Considering the

ystem of forces applied to a free rigid body, the linear complex

efined by the null-polarity is perpendicular to a spatial motion of

he rigid body, which as known by Chasles (1830) , can be repre-

ented as the composition of a translation and a rotation around

he axis of this screw motion. 

.6.3. Matrix representation of polarities in 3D and 4D space 

Polarities and projective geometry in the context of graphic

tatics have not only been explored from a geometrical point of

iew but also from an algebraic one; the latter following a matrix

pproach. In the first case, the geometrical constructions are based

n the notion of conics, quadrics, and their higher-dimensional

nalogues and they apply to both 2D and 3D graphic statics,

hereas in the latter case they are based on the notion of null-

olarity which applies only to 2D graphic statics (since it cannot

e defined in even dimensions). In this research paper both ap-

roaches are explored, thereby providing insights into - and a more
olistic view towards - the various polarity-based methods of gen-

rating reciprocal diagrams. In particular, it is highlighted how the

atrix approach can be used for any polar transformation and how

he geometrical approach can be used for the null-polarity. Thus,

ltimately the two approaches (projective geometry constructions

nd matrix transformations) are equivalent with respect to con-

tructing any type (Maxwell 2D, Cremona 2D, Rankine 3D) of re-

iprocal diagrams. 

A non-degenerate quadric, described in its general equation

orm in (1) , can be represented in matrix form ( Vaisman, 1997 )

s: x t Sx = 0.where x = 

⎡ 

⎢ ⎣ 

x 

y 

z 

1 

⎤ 

⎥ ⎦ 

, and the symmetric matrix associated

o the quadric is 

 = 

⎡ 

⎢ ⎣ 

a 11 a 12 a 13 a 14 

a 21 a 22 a 23 a 24 

a 31 a 32 a 33 a 34 

a 41 a 42 a 43 a 44 

⎤ 

⎥ ⎦ 

A point P = ( x p , y p , z p , 1 ) is then mapped to its polar plane π
hrough the polar transformation (in homogeneous coordinates) P
 Sx = 0. 
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Fig. 19. Pairs of spatial reciprocal diagrams in a Rankine 3D configuration. Left: Tensegrity 3-prism. Middle: Jessen icosahedral tensegrity. Right: Spoked cube. 

Fig. 20. (a): A polyhedral spatial truss ( F ) with three states of self-stress (top) and its corresponding Rankine 3D force diagram ( F’ ) (bottom) or equivalently a polyhedral 

spatial truss ( F’ ) and a Rankine 3D force diagram ( F ); (b): Local transformation by moving an internal node of F ; (c): Global projective transformations (non-uniform scaling 

and shearing) applied on F ; (d): Combinations of local and global transformations. 
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For example, considering as the quadric of the polarity a real

ellipsoid with canonical equation (in Cartesian coordinates): 

x 2 

a 2 
+ 

y 2 

b 2 
+ 

z 2 

c 2 
= 1 . (3)

A point P = ( x p , y p , z p ) is mapped to its polar plane π : 

x x p 

a 2 
+ 

y y p 

b 2 
+ 

z z p 

c 2 
= 1 (4)
hrough the transformation (in homogeneous coordinates): 

x p y p z p 1 

]
⎡ 

⎢ ⎣ 

1 / a 2 0 0 0 

0 1 / b 2 0 0 

0 0 1 / c 2 0 

0 0 0 −1 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

x 
y 
z 
1 

⎤ 

⎥ ⎦ 

= 0 . 

(5)

A null-polarity in the projective three-space can be represented

n matrix form by an anti-symmetric, (or skew) matrix A. In case

he central axis coincides with the axis z, the polarity maps a point
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Fig. 21. Polar transformations between planar tensegrity structures (on the right) and grillages (on the left), adapted from Tarnai (1989) . 
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[

 = ( x p , y p , z p ) to a polar plane π ( Cremona, 1872 ): 

 y p − y x p + k ( z − z p ) = 0 (6)

hrough the transformation (in homogeneous coordinates): 

x p y p z p 1 

]
⎡ 

⎢ ⎣ 

0 −1 0 0 

1 0 0 0 

0 0 0 −k 
0 0 k 0 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

x 
y 
z 
1 

⎤ 

⎥ ⎦ 

= 0 . (7) 

The matrices associated to non-degenerate quadrics and null-

olarity can be converted to each other through affine (reflection,

caling, shear, rotation, etc.) or more generally projective transfor-

ations using corresponding transformations matrices T. For in-

tance, in order to convert the matrix S of a real ellipsoid to the

atrix S’ of an elliptic hyperboloid, it is possible to multiply the

ormer with the following transformation matrix: 

 = 

⎡ 

⎢ ⎣ 

1 0 0 0 

0 1 0 0 

0 0 −1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

hich corresponds to an affine transformation representing a re-

ection along the z-axis. As a result, any type of quadric or null-

olarity can be used as described above to obtain a reciprocal po-

ar plane for a given point P and then by using a suitable matrix T

onvert it to any other polar construction. 

The representation of polarities in matrix form can be extended

o higher dimensions. In the projective four-space, the matrix form
f a non-degenerate hyper-quadric is: x t Sx = 0.where x = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

x 

y 

z 

w 

1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

,

nd the symmetric matrix associated to the hyper-quadric is 

 = 

⎡ 

⎢ ⎢ ⎣ 

a 11 a 12 a 13 a 14 a 15 

a 21 a 22 a 23 a 24 a 25 

a 31 a 32 a 33 a 34 a 35 

a 41 a 42 a 43 a 44 a 45 

a 51 a 52 a 53 a 54 a 55 

⎤ 

⎥ ⎥ ⎦ 

. 

For example, considering as the quadric of the polarity a 4-

lliptic paraboloid, a point P = ( x p , y p , z p , w p, 1 ) is mapped to its

olar plane π : 

x x p 

a 2 
+ 

y y p 

b 2 
+ 

z z p 

c 2 
− w 

2 

− w p 

2 

= 0 (8) 

hrough the transformation (in homogeneous coordinates): 

x p y p z p w p 1 

]
⎡ 

⎢ ⎢ ⎣ 

1 / a 2 0 0 0 0 

0 1 / b 2 0 0 0 

0 0 1 / c 2 0 0 

0 0 0 0 − 1 
2 

0 0 0 − 1 
2 

0 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

x 
y 
z 
w 

1 

⎤ 

⎥ ⎥ ⎦ 

= 0 . 
(9) 
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Fig. 22. Reciprocal spatial truss and hinged sheetwork on the right, induced by a polar transformation using a sphere on the left as described in the work of Wester (1989) . 
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3. Construction of reciprocal form and force diagrams 

In this section, the theoretical notions and geometric proce-

dures outlined above are applied to structures in global static

equilibrium to construct reciprocal form and force diagrams that

are projections of higher-dimensional and simply connected stress

functions. As already mentioned, the form diagrams need not be

tension-only or compression-only and can represent structures

which are either self-stressed or under external loading. Recip-

rocal diagrams in the projective two-space (respectively three-

space) can be produced from any polarity induced by a non-

degenerate quadric or null-polarity (respectively non-degenerate

hyper-quadric) defined in the projective three-space (respectively

four-space). For the examples visualised here, the simplest cases

are used (i.e. those of the paraboloid of revolution and the sphere).

The constructions are developed using the CAD platform McNeel

Rhino , together with the plug-in the Grasshopper and customised

Python codes. 

3.1. Maxwell 2D 

3.1.1. Orthographic projections of reciprocal polyhedra induced by a 

paraboloid of revolution 

For a given tetrahedral Airy stress function P (v, e, f), the planes

on which the faces f lie are mapped to their reciprocal vertices v’

( Fig. 1 ) through a paraboloid of revolution ( Fig. 9 ). Considering that

the connectivity of the vertices C v’ follows the connectivity of the

faces C f , a reciprocal tetrahedron P’ (v’, e’, f’) can be constructed.

Applying an orthographic projection of these dual tetrahedra along

the axis of the paraboloid yields a reciprocal planar form F (v, e, f)
nd force F’ (v’, e’, f’) pair, where the force diagram is an instance

f a Maxwell 2D diagram with edges being perpendicular to the

orresponding ones in the form diagram. 

.1.2. Perspective projections of reciprocal polyhedra induced by a 

phere 

The Maxwell 2D diagrams ( F, F’ ) can be also obtained through

 polarity induced by a sphere as described in Section 2.6.1 . In this

ase ( Fig. 10 ), given the initial tetrahedral stress function, a polar

eciprocal tetrahedron is first obtained through the polar transfor-

ation and then projected on the plane by means of a perspective

rojection from the centre of the sphere. It should be noticed that

he orthographic projection in the previous paragraph can be also

egarded as a special case of a perspective projection from the cen-

re of the paraboloid of revolution. In the projective three-space,

he centre of a quadric is defined as the pole of the plane at in-

nity according to that quadric. Since the paraboloid is tangent to

he plane at infinity, its centre is self-conjugate to the plane at in-

nity and thus lies at infinity as well. As result, in the Euclidean

mbedding, this perspective projection from infinity manifests it-

elf as an orthographic projection. As a result, with both methods

he same Maxwell 2D reciprocal can be obtained, even though the

olar polyhedron is different in the two cases. Furthermore, it can

e observed that the polarity induced by a sphere is equivalent to

he plane and origin construction mentioned above. In fact, in both

ases, the projections of the reciprocal vertices are perspective pro-

ections from a point and the projection ray is perpendicular to the

olar planes, implying that the point can be conceived as the cen-

re of a sphere. 
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.2. Cremona 2D 

.2.1. Orthographic projections of reciprocal polyhedra induced by a 

ull-polarity 

Given a self-stressed 2D form diagram ( F ) with an underlying

lanar graph, a Cremona 2D force reciprocal ( F’ ), with reciprocal

dges parallel to the corresponding edges of the form diagram,

an be obtained through the previously described null-polarity. The

orce diagram is then the projection of the dual polyhedron ( P’ )

eciprocal to the polyhedral Airy stress function ( P ) of the form di-

gram, in the direction along the central axis a and on a plane π
rthogonal to the central axis itself ( orthographic plane ) ( Fig. 11 ).

e observe that the null-polarity essentially produces the same

air of reciprocal form and force diagrams as in the Maxwell 2D

ases described above with the only difference that one of the di-

grams is rotated by 90 °. Thus, corresponding reciprocal edges are

ow parallel. 

.3. Rankine 3D 

.3.1. Projections of reciprocal 4-polytopes induced by a 

yper-quadric 

It is possible to extend the above constructions for quadrics to

patial trusses, which are projections of simply connected 4D stress

unctions P (v, e, f, c), P’ (v’, e’, f’, c’) (Maxwell Rankine stress func-

ions) . Essentially, the constructions are exactly the same, just one

imension up. Topologically, this type of structures comprise inter-

al cells enclosed by an external boundary and in three-space they

ook like cellular or polyhedral structures. In this case, vertices v of

 4-polytope map to hyperplanes c’ which intersect to produce re-

iprocal force cells (in the same fashion as for 2D trusses where

he polar planes of the polyhedral Airy stress function intersect

nd to faces). Thus, creating a reciprocal 4-polytope. The 3D pro-

ections of this higher-dimensional pair will result in a pair of spa-

ial reciprocal form and force diagrams F (v, e, f, c), F’ (v’, e’, f’,

’) where form edges ( e ) correspond to reciprocal perpendicular

orce faces ( f’ ) (Rankine 3D reciprocals). For the simplest case of

 simply connected 4-polytope P (5, 10, 10, 5) (5-simplex), a po-

arity (as described in Section 2.6.1 ) is used to map it to its re-

iprocal P’ (5, 10, 10, 5) ( Fig. 12 ). After projecting the 4-polytopes

ack to three-space, the three-dimensional form and force dia-

rams are obtained. Apart from these cases of spatial structures,

his method can be also used for rotationally symmetric 1-cell

tructures such as tensegrities through the geometrical technique

f coning ( McRobie, 2016 ). 

.4. Cremona 3D 

For a given 3D form diagram with underlying 2D planar graph

nd a state of self-stress, it is possible to derive a Cremona 3D

eciprocal force diagram ( Crapo, 1979 ), where spatial form edges

orrespond to reciprocal parallel force edges ( Fig. 13 ). Contrary to

he Cremona 2D case, however, these three-dimensional recipro-

al diagrams are not projections of 4D reciprocal stress functions

hrough a null-polarity, which as already mentioned, is not defined

athematically in even dimensions. Cremona 3D reciprocals have

een investigated in the work of Sauer (1970) and more recently in

icheletti (2008); Wallner and Pottmann (2008) , and Tachi (2012) .

More generally, since the 2D graphs of 3D form and force dia-

rams are usually not planar, edge-to-edge reciprocity between the

D diagrams is not possible in such cases ( Jasienski et al., 2016 ).

ifferent solutions to derive reciprocal form and force diagrams

ith corresponding edges parallel and with underlying non-planar

raphs can be found in literature for both 2D and 3D cases. For

D trusses, the method suggested by Bow consists in the addition

f an extra node at the intersection of bars ( Bow, 1873 ). In the
ase of 3D trusses, Maxwell observed that the static equilibrium

f a spatial structure can be evaluated using 2D graphic statics

y studying its three orthogonal two-dimensional projections and

heir corresponding Airy stress functions. More recently, Micheletti

roposed a matrix-based procedure for the construction of point-

ymmetric reciprocal force diagrams for some 3D self-stressed net-

orks ( Micheletti, 2008 ). 

Given a generic 3D form diagram in static equilibrium, various

ossible configurations of 3D force diagrams with corresponding

dges parallel can be generated and transformed using the vector-

ased approach to 3D graphic statics ( D’ Acunto et al., 2017 ). Un-

ike Rankine 3D diagrams, vector-based 3D diagrams do not obey a

D duality between their geometrical elements. In particular, they

ollow a rather 3D duality in the sense that form edges ( e ) map to

orce edges ( e’ ) and form vertices ( v ) to force faces ( f’ ), however;

hey generally have duplicate edges ( Fig. 14 ). As a result, vector-

ased diagrams are in general not reciprocal. 

. Implementation and results 

Following the constructions described above, we present sev-

ral case studies. For the two-dimensional case, we start with the

axwell 2D reciprocals and the corresponding Airy stress func-

ions for two of the figures found in Maxwell (1864) ( Fig. 15 ).

e then show the reciprocal polyhedral Airy stress function and

he 2D projections in terms of a pair of form and force diagrams

f a Pratt truss under external loading, and the equivalent self-

tressed truss ( Fig. 16 ). For the same case, we then apply polar

ransformations for the analysis and design of the geometry and

e highlight, how this framework can incorporate several trans-

ormations, and their combinations, ( Fig. 17 ) such as: local trans-

ormations induced by moving individual nodes; global projective

ransformations (scaling, shearing, rotating, etc.); as well as local

nd global transformations of the polyhedral Airy stress function.

he latter can be particularly useful for cases where the external

oundaries of a structure should remain fixed and the designer

ants to change only the geometry of the internal structural mem-

ers. Since in Maxwell’s approach reciprocal form and force di-

grams can interchange roles, it is important to notice that the

ransformations can equivalently happen in the form, or force di-

gram, or their corresponding stress functions in which case the

ther three reciprocal objects are directly updated. As a result,

he designer can directly design and control the force diagram by

hanging the location of its vertices (which corresponds to alter-

ng lengths for the 2D case and face surface areas for the 3D case)

nd visually inspect and interact with the updated form. More-

ver, after transforming the force diagram or any of the poly-

edral stress functions, the result will be a new geometry un-

er static equilibrium. In the case of local transformations and

hen the geometrical objects under transformation are not trian-

ulated, the constraint should be imposed that the faces of the

olyhedral stress functions remain planar. Lastly, as a known result

n rigidity theory ( Whiteley, 1982 ), convex Airy stress functions

roject to two-dimensional spiderweb structures: structures which

re tension-only enclosed by a compressive hoop or equivalently

tructures which are compression-only enclosed by a tensile hoop.

s a result, by manipulating the polyhedral Airy stress function

t is possible to produce tension-only/compression-only, or tension

nd compression structures. Furthermore, we should highlight how

ny boundary conditions/ external forces can be incorporated in

he initial geometry, which can be subsequently seen and analysed

s an equivalent self-stressed truss ( Fig. 18 ). Any external concur-

ent forces in equilibrium can be applied either on the structural

oundary or on internal nodes of the structure and they result in

 further subdivided equivalent self-stressed truss. In the general

ase of non-concurrent external forces in equilibrium a funicular
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Fig. 23. The application of polarities in structural analysis and design. 
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structure can be also added to produce a diagram which is a pro-

jection of a simply-connected stress function as explained in detail

in ( McRobie et al., 2016 ) ( Fig. 16 ). 

For the spatial case, we apply the constructions to trusses

which are projections of simply connected 4-polytopes, such as
he spoked cube, and rotationally symmetric tensegrity structures,

he Jessen icosahedron and the 3-prism for which we obtain their

ankine 3D reciprocals ( Fig. 19 ) through coning (adding an inter-

al node and thus creating several internal cells in these other-

ise 1-cell structures). Furthermore, similar to the Pratt truss we
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pply this framework to the design and analysis of spatial trusses

llowing for local and global transformations at the same time

f the form of force geometries. A polyhedral spatial truss with

hree internal nodes ( Fig. 20 ), and thus three states of self-stress,

an undergo local transformations by moving external or internal

odes. Moreover, global projective transformations can be applied

n its form diagram, force diagram, or corresponding stress func-

ions, and can be combined with local transformations. As in the

D case, these transformations always result in a new spatial ge-

metry in static equilibrium. 

. Further applications of polarities to structural engineering 

heory 

In the context of structural engineering theory, polar transfor-

ations have not only been used in relation to graphic statics.

arnai (1989) used polarities in the projective two-space to estab-

ish transformations between planar tensegrity structures and gril-

ages ( reciprocal frames ) ( Fig. 21 ), in a projective geometry frame-

ork that guarantees duality. These two types of structures obey

 2D duality principle with the number of joints and bars of the

ensegrity corresponding to the number of beams and joints of the

rillage. As observed by Rankine (1864) and Whiteley (1987) the

tatic and kinematic properties of a structure, including its stiff-

ess, are preserved under projective transformations. Moreover,

arnai (1989) proved algebraically that the rank of the equilibrium

atrix is preserved under a polarity which maps tensegrities to

rillages and vice versa. As a result, these types of structures can

e transformed into each other while maintaining their basic prop-

rties such as infinitesimal rigidity ( Tarnai, 1989 ). 

In the projective three-space, polarities can be applied for

he construction of lattice (truss) and dual plate structures

 hinged sheetworks ), where plates rigid in their planes are con-

ected through shear-resistant edges. This has been studied in

etail by Wester (1989, 2011 ) as well as by rigidity theorists

 Whiteley, 1987 ). Following this 3D dualism ( Fig. 1 middle col-

mn), truss nodes map to plate faces, truss bars to shear-resistant

dges, and consequently axial forces to shear forces. The two struc-

ures obey Euler’s polyhedral formula, have the same Gaussian cur-

ature ( Wester, 1989 ), static and infinitesimal behaviour, rigidity

roperties, and degrees of freedom ( Whiteley, 1987 ). The construc-

ion proposed by Wester for deriving dual lattice and plate struc-

ures is essentially a polarity induced by a sphere ( Fig. 22 ). In

his way, the axial loads in the lattice structure regarded as force

ectors are transformed into moment vectors that produce shear

orces in the edges of the plate structure. The shear forces relate

o the axial forces by a ratio r f which is calculated as r f = l/ sin (a) ,

here l is the length of the reciprocal truss bar and a is the angle

etween the position vectors of the nodes of the bar regarding the

entre of the sphere as the origin O ( Wester, 1989 ). As a result, the

tructural and geometrical analysis and design of a plate structure

an be performed on the reciprocal truss and then mapped back to

he original structure and vice versa ( Wester, 2011 ) – potentially

implifying the structural problem, when the reciprocal structure

s easier to solve. 

The work of Tarnai and Wester meets and can be generalized

hrough rigidity theory. Whiteley (1987) , extended spatial trusses

o become spatial tensegrities and discusses how they can be

ransformed under a polarity to special cases of hinged sheet-

orks, ( slotted sheetworks ) in which plates meeting at an edge can

ot only rotate but also slide with respect to each other on one di-

ection along the slotted hinge. This result, even though not com-

only used, generalises Tarnai’s tensegrity – grillage polar corre-

pondence in two-dimensions to its three-dimensional analogue.

hus, for the same structure the dimension of the polar transfor-

ation can give different insights; for a spatial tensegrity a 4D po-
arity can give a reciprocal Rankine force diagram and a 3D polar-

ty can transform the tensegrity to a completely different type of

tructure which is also in static equilibrium. Consequently, polari-

ies can provide a very elegant, useful and unified framework for

pplications in design, analysis, and structural transformations. 

iscussion & conclusions 

We discussed and visualised Maxwell’s reciprocal construc-

ions via polar transformations based on higher dimensional stress

unctions. We explained these constructions through the scientific

rame of the second half of 19th century and placed them within

 projective geometry framework. We thus discussed the underly-

ng fundamental geometry of contemporary graphic statics. More-

ver, we generalised these polar transformation methods following

 matrix analysis approach to obtain a method for generating any

ype of reciprocals for n- dimensional trusses in static equilibrium

hen these are projections of simply connected (n + 1)- polytopes.

e discussed how other already existing research and applications

n structural design and analysis are underpinned by exactly the

ame geometrical principles. As a result, the abstract geometrical

ramework of projective geometry and polarities can have different

hysical manifestations and engineering applications ( Fig. 23 ): us-

ng a 2D polarity it is possible to transform grillages into tenseg-

ities ( Tarnai, 1989 ); using a 3D polarity plate structures can be

onverted into trusses ( Wester, 1989 ) and tensegrities to slotted

heetworks ( Whiteley, 1987 ); furthermore,3D polarity can be used

o derive reciprocal polyhedral Airy stress functions and force di-

grams of planar trusses. By means of a 4D polarity, it is possible

o derive reciprocal Maxwell-Rankine stress functions and Rankine

D reciprocals for spatial trusses. 

This proposed framework based on polarity and projective ge-

metry, relies on direct mathematical operations and allows for the

eometrical study, design, analysis, and form finding of planar and

patial structures in a unified way. Thanks to the use of contempo-

ary computer aided design tools, which allow for an intuitive and

isual definition of geometrical objects, the proposed theoretical

ramework is implemented into a series of computational routines.

s a result, the theoretical framework is translated into a compu-

ational framework which allows for a real-time and smooth ap-

lication of polar transformations to several structural design and

nalysis tasks. 
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ppendix A 

When the pole P is inside the conic γ on the projective plane,

he polar line p can be found as follows ( Fig. 1 ): from P take any

wo arbitrary lines p 1 , p 2 which will intersect γ in points A, B and

, D respectively; from these two pairs of points take the corre-

ponding pairs of tangent lines a, b and c, d with regards to γ ;

hese two pairs of lines will intersect in points AB and CD . These

wo points define the polar line p . Equivalently, in projective three-

pace for a pole P inside a quadric � the polar plane π can be
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Fig. A.1. Polarity on the plane between a point (P) and a line (p) induced by a conic in 2D projective geometry for the case of P being internal with regards to the conic. 

Fig. A.2. Polarity in space between a point (P) and a plane ( π ) induced by a quadric in 3D projective geometry for the case of P being internal with regards to the quadric. 
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found as follows ( Fig. 2 ): from P take any three arbitrary planes

π1 , π2 , π3 , which intersect � in the planar curves γ 1 , γ 2 , γ 3 re-

spectively; from these three curves take the corresponding tangent

cones which define points P 1 , P 2 , P 3 . These three points define the

polar plane π . 
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